INSIDE MACINTOSH

Text Handling and
Internationalization

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

Apple Computer, Inc.

© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh,
and WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.

Mac and QuickDraw are trademarks
of Apple Computer, Inc.

Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and

may be registered in certain The quotation on page 37 is by Lao
jurisdictions. Tsu.

Helvetica and Palatino are The quotations on pages 26 and 30
registered trademarks of are by Oscar Wilde.

Linotype-Hell AG and/or its

subsidiaries.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

The quotation on page 35 is by
Emily Dickinson.

Draft. Confidential. 0 Apple Computer, Inc. 4/29/96

Contents

Chapter 1 Introduction to Text Handling and Internationalization on
Mac OS 8 11

About Text Handling and Internationalization in Mac OS 8 1-6
Mac OS 8 Text-Handling Component Features 1-7
A Word About Text Imaging in Mac OS 8 1-11
Mac OS 8 Exceptions to Backward Compatibility With System 7 1-11
Looking Toward the Future 1-13
Text Handling in System 7 and Mac OS 8: A Comparison 1-14
Internationalization and Localization 1-15
Writing Systems and Scripts 1-17
Writing Systems and Scripts As Understood in Mac OS 8 1-18
Writing Systems and Script Systems As Understood in System 7 1-20
Deconstructing the System 7 Script Manager and Looking at Mac OS 8
Solutions 1-20
Text Objects for Text Storage and Interchange 1-25
Text Object Contents 1-27
A Simple Text Object 1-27
A Text Object Containing Multiple Text Runs 1-28
How Text Objects Are Used 1-30
Text Objects and Text Strings: A Comparison 1-31
Text Object Types 1-32
Indices for Text in a Text Object ~ 1-32
Imaging With Text Objects 1-34
Font Selection Hint for Font Substitution 1-34
Text Measurement 1-35
Text Alignment and Justification 1-36
Controlling Text Flow When the Text Is Too Wide for the Line 1-37
Text Annotations 1-39
Annotation Types and Storage 1-40
Annotation Syntax and Semantics 1-40
Annotation Attributes 1-41
How Annotations Are Adjusted When Text Is Modified 1-42

iii

Draft. O Apple Computer, Inc. 4/19/96

Effects of Replacing, Inserting, and Deleting Text on the Text and Its
Annotations 1-43
Storage and Retrieval of International Data and Preferences 1-48
The Locale Database 1-48
Locales 1-51
The Locale Object Manager 1-51
Default System Locale and Default Application Locale 1-52
How the Locale Database Is Created 1-53
Storing Persistent Data in the Locale Database 1-53
Defining a Locale and Its Defaults 1-54
Providing a Stand-Alone Locale Object 1-54
Locale Objects 1-55
Locale Object Names Table 1-56
Locale Object Attribute Name-Value Pairs 1-57
Where Locale Objects Reside in Memory 1-58
Default Locale Objects for a Locale 1-62
Searching the Locale Database for Data 1-63
Text Encoding and Conversion 1-67
Encoding Converters 1-67
The High-Level Encoding Converter Manager 1-67
The Low-Level Encoding Converter Manager 1-68
Characters, Codes, Text Encodings, Text Encoding Schemes, and Text
Elements 1-70
Characters 1-70
Codes 1-71
Coded Characters 1-71
Text Encodings and Text Encoding Schemes 1-72
Text Representation and Text Elements 1-73
Text Encoding Specification 1-74
Unicode 1-76
Converting Between Character Sets Using Mapping Tables 1-79
Round-Trip Fidelity 1-79
Multiple Semantics and Multiple Representations 1-80
Strict and Loose Mapping 1-81
Base Encoding Mapping Tables Supported by Mac OS 8 1-84
Handling Editable Text 1-84
The Text Panel 1-84
Using the Text Panel ~ 1-85

iv
Draft. O Apple Computer, Inc. 4/19/96

Text Engines 1-86
Selecting and Getting a Text Engine 1-87
Using a Text Engine Directly 1-88
If You Are Providing a Text Engine 1-88
About TextEdit 1-89
String Comparison 1-89
Collation References 1-89
Overriding Default Collation Behavior 1-90
Code Conversion for String Comparison 1-90

Chapter2 Locale Object Manager Reference 2-1

Locale Object Manager Constants and Data Types 2-5
Locale Reference 2-5
Locale Iterator Reference 2-6
Locale Database Search Direction 2-7
Locale Object Reference 2-8
Attribute Name-Value Pair Structure 2-8
Standard Attribute Names 2-10
Name-Table Entry 2-12
Locale Object Name Identifier Constants 2-13
Locale Name Identifier for Locale’s Default Values 2-15
Locale Identifier and Constants 2-16
Locale Language Codes and Wildcard 2-17
Locale Region Code and Wildcard 2-18
Locale Customization Code and Wildcard 2-19
Locale Object Tag Index ~ 2-19
Associated-Data Tag 2-20
Locale Object Memory Context ~ 2-21

Locale Object Manager Functions 2-21
Obtaining and Setting Locale References 2-21
Setting the Locale for the Current Process 2-26
Obtaining the Number of Locales in the Database 2-27
Obtaining a Locale Object’s Name, Attributes, Data, and Locale 2-28
Obtaining a Locale’s Default Values 2-35
Getting and Setting Default Behavior for a Locale 2-36

Draft. O Apple Computer, Inc. 4/19/96

Searching for the First Matching Object of a Locale and Searching
Iteratively ~ 2-39
Adding Locale Objects To and Removing Them From the Locale
Database 2-50
Getting Data Associated With a Locale Object 2-54
Creating and Obtaining a Locale Identifier 2-60
Obtaining Locale Identifier Information 2-68
Determining Where a Locale Object Exists in Memory 2-72
Locale Object Manager Result Codes 2-72
Glossary 2-75

Draft. 0 Apple Computer, Inc. 4/19/96

CHAPTER 1

Introduction to Text Handling
and Internationalization on

Mac OS 8

Contents

About Text Handling and Internationalization in Mac OS 8 1-6
Mac OS 8 Text-Handling Component Features 1-7
A Word About Text Imaging in Mac OS 8 1-11
Mac OS 8 Exceptions to Backward Compatibility With System 7 1-11
Looking Toward the Future 1-13
Text Handling in System 7 and Mac OS 8: A Comparison 1-14
Internationalization and Localization 1-15
Writing Systems and Scripts 1-17
Writing Systems and Scripts As Understood in Mac OS 8 1-18
Writing Systems and Script Systems As Understood in System 7 1-20
Deconstructing the System 7 Script Manager and Looking at Mac OS 8
Solutions 1-20
Text Objects for Text Storage and Interchange 1-25
Text Object Contents 1-27
A Simple Text Object 1-27
A Text Object Containing Multiple Text Runs 1-28
How Text Objects Are Used 1-30
Text Objects and Text Strings: A Comparison 1-31
Text Object Types 1-32
Indices for Text in a Text Object 1-32
Imaging With Text Objects 1-34
Font Selection Hint for Font Substitution 1-34
Text Measurement 1-35
Text Alignment and Justification ~ 1-36
Controlling Text Flow When the Text Is Too Wide for the Line 1-37
Text Annotations 1-39
Annotation Types and Storage 1-40

Contents 1-1
Draft. O Apple Computer, Inc. 4/19/96

CHAPTER 1

Annotation Syntax and Semantics 1-40
Annotation Attributes 1-41
How Annotations Are Adjusted When Text Is Modified 1-42
Effects of Replacing, Inserting, and Deleting Text on the Text and Its
Annotations 1-43
Storage and Retrieval of International Data and Preferences 1-48
The Locale Database 1-48
Locales 1-51
The Locale Object Manager 1-51
Default System Locale and Default Application Locale 1-52
How the Locale Database Is Created 1-53
Storing Persistent Data in the Locale Database 1-53
Defining a Locale and Its Defaults 1-54
Providing a Stand-Alone Locale Object ~ 1-54
Locale Objects 1-55
Locale Object Names Table 1-56
Locale Object Attribute Name-Value Pairs 1-57
Where Locale Objects Reside in Memory 1-58
Default Locale Objects for a Locale 1-62
Searching the Locale Database for Data 1-63
Text Encoding and Conversion 1-67
Encoding Converters 1-67
The High-Level Encoding Converter Manager 1-67
The Low-Level Encoding Converter Manager 1-68
Characters, Codes, Text Encodings, Text Encoding Schemes, and Text
Elements 1-70
Characters 1-70
Codes 1-71
Coded Characters 1-71
Text Encodings and Text Encoding Schemes 1-72
Text Representation and Text Elements 1-73
Text Encoding Specification 1-74
Unicode 1-76
Converting Between Character Sets Using Mapping Tables 1-79
Round-Trip Fidelity 1-79
Multiple Semantics and Multiple Representations 1-80
Strict and Loose Mapping 1-81
Base Encoding Mapping Tables Supported by Mac OS 8 1-84

Contents
Draft. O Apple Computer, Inc. 4/19/96

CHAPTER 1

Handling Editable Text 1-84
The Text Panel 1-84
Using the Text Panel 1-85
Text Engines 1-86
Selecting and Getting a Text Engine 1-87
Using a Text Engine Directly 1-88
If You Are Providing a Text Engine 1-88
About TextEdit 1-89
String Comparison 1-89
Collation References 1-89
Overriding Default Collation Behavior 1-90
Code Conversion for String Comparison ~ 1-90

Contents
Draft. O Apple Computer, Inc. 4/19/96

1-3

CHAPTER 1

Contents
Draft. 0 Apple Computer, Inc. 4/19/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

This chapter provides an overview of text-handling and internationalization
support in Mac™ OS 8. For the Mac OS 8 Developer Release: Compatibility
Edition, this chapter is meant to serve these purposes:

= It provides a high-level view of the new and improved text handling and
internationalization components on Mac OS 8, describing them and
highlighting their special features. See “About Text Handling and
Internationalization in Mac OS 8” (page 1-6).

= It explains System 7 backward compatibility provided within Mac OS 8 and
identifies those few areas for which backward compatibility is not provided.
See “Mac OS 8 Exceptions to Backward Compatibility With System 7”
(page 1-11).

= It gives a brief look at the future vision for text handling and
internationalization beyond Mac OS 8. See “Looking Toward the Future”
(page 1-13).

= It explains the fundamental conceptual differences between Mac OS 8 and
System 7 that provide the underpinnings to text handling. This includes
explanation of a different understanding of the concepts of a writing system
and a script for Mac OS 8 from that on which text handling for System 7 was
premised. The Mac OS 8 view is more aligned with the concepts of scripts
and writing systems as they are used and understood in the area of
linguistics. However, it requires an adjustment in thinking on your part if
you have based your understanding of these concepts on how they are
explained in Inside Macintosh: Text for System 7 in relation to System 7’s
Script Manager. See “Text Handling in System 7 and Mac OS 8: A
Comparison” (page 1-14).

= It gives a more thorough treatment of several of the new text components
central to Mac OS 8 that make internationalizing your application easier. It
describes various aspects of these three components:

o Text objects and the Text Object Manager. See “Text Objects for Text
Storage and Interchange” (page 1-25).

o Locales, the locale database, and the Locale Object Manager. See “Storage
and Retrieval of International Data and Preferences” (page 1-48).

o Encoding conversion, the Low-Level Encoding Converter, and the
High-Level Encoding Converter. See “Text Encoding and Conversion”
(page 1-67).

Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

= It briefly describes the Text Editing Services and the String Comparison
Services. For Text Editing Services, see “Handling Editable Text” (page 1-84).
For the String Comparison Services, see “String Comparison” (page 1-89).

WARNING

This document is preliminary and incomplete. All
information presented here is subject to change in later
developer releases. Some information it contains will
become the basis for conceptual and tutorial information
in chapters of the Inside Macintosh: Text Handling and
Internationalization book for Mac OS 8, to be provided at a
later date. a

About Text Handling and Internationalization in Mac OS 8

1-6

Mac OS 8, provides text-handling and internationalization features that carry
forward the Apple® tradition of setting new standards and leading the
industry in software internationalization. By building into its design ease of use
and powerful flexibility, Mac OS 8 gives developers more control over how an
application can present language-based choices to end users and provides
extensibility that can move with any direction the industry takes. Mac OS 8's
international software allows you to develop world-ready software that can be
released in more than a single geographic market at the same time.

One example of the flexibility inherent in Mac OS 8 is that it allows you to
create an internationalized application that can handle a mix of any text
encodings (or text encoding schemes) and be easily localized for any language
and geographical region. In addition to the standard set of Mac OS 8 text
encodings and Unicode shipped with the system software, you as a third-party
developer can provide your own text encodings and make them available to
applications running on Mac OS 8. (For System 7 and its earlier versions, this
was not possible.) For example, any of the DOS code pages can be installed on
a Mac OS 8 system. Mac OS 8 supplies a number of text encodings including
Latin-1 (ISO 8859-1, which is the default encoding for the Internet. Mac OS 8
performs conversion from one encoding scheme to another. One benefit is that
your application can support text files in any encoding scheme that your user
might obtain from the Internet.

About Text Handling and Internationalization in Mac OS 8
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Mac OS 8 provides more flexibility in its international support than other
platforms do. Neither Windows 95 nor Windows NT (New Technology) offer
feasible alternatives to Mac OS 8.

Mac OS 8 includes far more Unicode support than does Windows 95 and it
offers far more flexibility and ease of use than does Windows NT. For example,
if you code your application to Windows NT using its standard form, you can
use the Unicode text encoding or another text encoding, but not both. Windows
NT standard form does not let you support a mix of text encodings; the single
encoding to be used is set when you compile your application. You can,
however, make specific calls from within your application to support different
text encodings, but this approach is far more cumbersome than the easy way in
which Mac OS 8 allows you to support mixed encodings.

Mac OS 8 Text-Handling Component Features

Mac OS 8 provides many new text-handling components. The features these
components offer include

= support for text objects that let you store encoding specification, language,
and region information along with text. Because they encapsulate this
information, text objects remove the complexity from the work you need to
do to maintain the text encoding for text along with the text string. Text
objects are the primary means of passing text to and between system
components. Text objects allow easy conversion of text between encoding
schemes and easy localization of your application; you should use them for
text displayed as part of the human interface, such as text shown in menus
and dialog boxes. The Text Object Manager provides support for text
annotations that let you attach related data to a segment of a text string
within a text object. For Mac OS 8 applications, you should think of using
text objects as the default scenario for handling text. The only circumstances
in which you might not want to use text objects are when you export text to
another application on another platform and when you implement a
text-intensive application such as a word processor. See “Text Objects for
Text Storage and Interchange” (page 1-25) for more information.

= support for use of a new repository for international preferences and data,
called the locale database, and access to the database and its contents
through the Locale Object Manager. You can add objects containing data to
the database and remove them from it, search the database for objects, and
obtain information about objects. See “Storage and Retrieval of International
Data and Preferences” (page 1-48).

About Text Handling and Internationalization in Mac OS 8 1-7
Draft. O Apple Computer, Inc. 4/29/96

1-8

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

= the provision of a full-scale encoding converter that allows you to convert
text to and from Unicode, gives you fine-grain control over the conversion
process, and provides extensive error reporting.The Low-Level Encoding
Converter supports table lookup-based conversion to or from Unicode. It
also provides attendant utilities, such as truncation functions and functions
for converting Pascal strings. See “Text Encoding and Conversion”
(page 1-67) for more information.

= the provision of a high-level encoding converter that allows you to convert
text between any two encodings or schemes and offers ease of use by
determining default conversion-process values for you. The High-Level
Encoding Converter Manager performs table lookup-based and algorithmic
conversions. It uses the Low-Level Encoding Converter for table
lookup-based conversion and plug ins for algorithmic conversions. This
version of the converter does not map external formatting from the source
text to the converted text, so it is best used to convert mainly plain text or
text with inline formatting, such as HyperText Markup Language (HTML).
You might want to use either of the encoding converters instead of text
objects when your application does extensive text processing, in which case
you'll need to perform encoding conversions yourself. See “Text Encoding
and Conversion” (page 1-67) for more information.

= Text Editing Services, including a text panel, text engines, and an enhanced
and improved version of TextEdit. Text panels are simple to use, requiring
very little effort on the part of your application. They allow you to display
editable text fields in your application’s windows. The text panel manages
itself in the rectangle you define. You can select the text engine to use with a
text panel. For more extensive processing, you can use an engine alone. For
Mac OS 8, you are not limited to use of a single text engine as is the case
with TextEdit in System 7. Text Editing Services include an enhanced version
of TextEdit that provides support for integrated inline input and text objects,
and is based in the new event model. See “Handling Editable Text”
(page 1-84). Note that for this release, a modified version of the TextEdit
engine that eliminates the 32K record limitation is the only supported text
engine.

= new and enhanced String Comparison Services for comparing and
searching strings for all languages. These functions support text objects,
allowing two strings in different text encodings to be compared. See “String
Comparison” (page 1-89) for more information.

= an enhanced version of the Text Services Manager (TSM) that includes
support for a broad range of text services in addition to input methods,

About Text Handling and Internationalization in Mac OS 8
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

removes Chinese-Japanese-Korean (CJK) limitations on input-method
support, and greatly simplifies the process required to make your
application TSM aware. TSM takes full advantage of the new event model.
For Mac OS 8, TSM supports new categories of text services through a
common interface and makes these services available to a wide range of
applications. To enable integration of these services within your application,
TSM supplies these two levels of interfaces:

o a high-level interface through functions that use the TSMDocumentID
structure and that gives your application easy access to input methods
and available interactive text services

o alow-level interface that manipulates the underlying TSMContext service
context and allows your application direct access to the service’s
functionality, letting you use any services as an integrated part of your
application.

If you are providing text services, TSM for the Mac OS 8 is designed to make
it easy for you to create them. TSM supports these three categories of text
services:

o input methods, designed to filter events passed to the application. Input
methods are capable of intercepting text entry and interacting with both
your application and its user to convert raw events to the text stream.

o interactive text services such as spell checkers, style checkers, and
dictionaries, which, when activated, interact with your application and its
user to perform a specific action on the text encapsulated within the
application. They use the TSM protocol to access and modify the
encapsulated text and interact with the user on behalf of your host
application.

o batch services such as hyphenators, tokenizers, and stemmers that your
application can use to obtain specific linguist processing of the text it
handles. These services do not process events, and your host application
must call them directly.

= revised and extended keyboard-menu handling support extended to handle
other types of text input. The new design allows for additional classes of text
input methods to be added to the menu and expands the technology to
handle input devices other than the keyboard, such as speech-to-text and
pen input. This support is now referred to as Text Input Menu Handling.
The new menu, which is called the Text Input menu, can be configured by
the application or its user. Your application can enable and disable menu
items. For example, if it doesn’t handle Arabic, your application can gray out
the item.

About Text Handling and Internationalization in Mac OS 8 1-9
Draft. O Apple Computer, Inc. 4/29/96

1-10

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

a new event model that includes a suite of Text Events, and a newly
designed keyboard architecture with a new key translation module and
functions. The Key Translation module is responsible for converting virtual
keycodes into renderable character codes. New functionality is added to the
translation routines for sequential dead keys and for mapping a single
keypress to many character codes.

a friendlier and simplified International Text String Parser that provides an
interface composed of multiple functions and data structures rather than one
function with a huge parameter block, as was the case in the past with single
Int1Tokenize function that used the 'it14" tokens resource. This set of
utilities allows you to define your own metaclasses of tokens.

Number Formatting and Conversion Services that give you the ability to
format numbers for any language, country, and encoding scheme in a
transparent way and that include scanning routines to convert the text into
binary representation of the number.

new Date-and-Time support through the use of TimeObjects and calendars.
TimeObjects provides UTC (Coordinated Universal Time) support and an
expanded range of representable times. The new Date-and-Time support
also includes extended formatting with TimeObjects. A date-time format is
defined for specifying information necessary to represent a TimeObject, or
portions of one, in textual form. The calendar services use TimeObjects to
provide a higher level of date and time support. These services provide a
plug-in architecture that allows new calendar engines to be added and
allows for the behavior of existing calendars to be overridden. Mac OS 8
provides support for a basic set of calendars. Calendars not supported in the
first release of Mac OS 8 can easily be added later by Apple or, by you, as
third-party developer.

a new Language Manager that allows users to interact with the system in
the language of their choice. The language an application uses need not be
the same one that another application or workspace (such as the Finder) is
using at the same time. At application launch, the Language Manager
establishes the primary language for the application.

additional Text Utilities.

integration of WorldScript® I and WorldScript IT supporting a single code
base. This integration allows for one system for the world; there are no
extensions and no patches.

About Text Handling and Internationalization in Mac OS 8
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

A Word About Text Imaging in Mac OS 8

Mac OS 8 differs from System 7 in how it provides support for and handles text
imaging. Apart from high-level text imaging done through text panels, text
engines, TextEdit, and text objects, for Mac OS 8 text imaging is separate from
text handling. Applications requiring greater control over text imaging and
more intensive text-imaging services can use one of the graphics systems
provided with Mac OS 8, such as GX or Color QuickDraw™.

The Text Object Manager provides default text imaging. A single text-imaging
function combines the work of the QuickDraw Text text-measuring function
and the Font Manager font metrics function, providing the width in pixels of
the text object’s string as imaged by DrawText, along with the total line height
and the ascent. The Text Object Manager uses a color graphics port that you can
specify. It also allows you to provide it with a font-substitution hint to assist it
in determining which font to use when the most appropriate one is not
available.

Mac OS 8 Exceptions to Backward Compatibility With
System 7

With few exceptions, software you develop today using the international
technology provided by System 7 will work with Mac OS 8.

IMPORTANT
The following list might be incomplete. More information
will be provided in later developer releases. a

Here are aspects of the features of System 7 for which backward compatibility
is not supported:

= Input methods. If you provide an input method for System 7 and want to
make it available for Mac OS 8, you must replace it with a new one that is
SOM-based (System Object Module). In System 7, input methods are
implemented as components. In Mac OS 8, input methods are SOM-based.

= Aspects of the Script Manager.

o The Script Manager’s internal data structures are different in Mac OS 8
from what they were in System 7. If you access them directly in your

Mac OS 8 Exceptions to Backward Compatibility With System 7 1-11
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

application—a behavior that is unsupported and was always
unsupported in System 7—your application will not run in Mac OS 8.

o For most selectors, the SetScriptVariable and SetScriptManagerVariable
functions have only local effect in Mac OS 8. That is, any changes you
make using these functions will be effective only in your calling
application’s current context.

o When possible, the Script Manager’s notion of a system script will be
carried out and synchronized with the application’s initial locale—usually
the workspace locale. However, circumstances can occur in which an
application’s default locale has no equivalent script code.

o The functions GetScriptUtilityAddress and SetScriptUtilityAddress are
no longer supported.

o For Mac OS 8, default fonts are specified by a special data structure in the
locale. Mac OS 8 does not recognize equivalent values stored in the
System 7 international resource.

= Aspects of QuickDraw Text.

o You should avoid using the System 7 FontToScript and FontScript
functions, which convert a family FOND ID to a script code. Although
existing fonts retain their IDs for backward compatibility, new fonts are
not backward compatible.

o The Print Action routine, (described in System 7’s Inside Macintosh:
Devices) has no effect in Mac OS 8.

o The smCharPortion verb is not supported.
o The ForceFont flag is always false in Mac OS 8.

o Negative verbs for GetScriptVariable that returned vectors for low-level
imaging within WorldScript I will return universal procedure pointers
(UPPs) to no-operational (no-op) routines for this release of Mac OS 8.
This functionality will be supported in a later release of Mac OS 8.

= Aspects of keyboard support.

o Although backward compatibility is provided for the KeyScript routine,
Apple strongly recommends that you move to using the new Text Input
Menu Handling support.

o The GetScriptManagerVariable function called with smKCHRCache verb will
return a KHCR, but not necessarily the one used by the Key Translation
Manager.

1-12 Mac OS 8 Exceptions to Backward Compatibility With System 7
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

= Aspects of WorldScript.

o WorldScript I QuickDraw patch. Mac OS 8 does not support the
GetScriptQDPatchAddress and SetScriptQDPatchAddress functions used for
getting a pointer to the specified WorldScript I QuickDraw patch for a
script system and patching a script system with a new QuickDraw
routine, nor does it support the GetScriptUtilityAddress and
SetScriptUtilityAddress functions.

o For this release of Mac OS 8, none of the routines in the Wor1dScript.h
header file are implemented. It is highly likely that they will not be
supported at all for Mac OS 8. Later developer releases will provide
further information.

= Dictionary Manager. The System 7 Dictionary Manager is no longer
supported.

= Aspects of TextEdit.

o Private scrap handling. For System 7, monostyled TextEdit used the
private scrap in some circumstances. For Mac OS 8, monostyled TextEdit
scrap handling is unified with multistyled TextEdit, and it always uses
the public scrap.

o Undocumented low-memory globals are no longer maintained. They
include TEFindLine, TETrimMeasure, WordRedraw, TEWdBreak, JPixel2Char,
JChar2Pixel, and JHiliteText.

o For System 7, TextEdit calls the Script Manager to compute word breaks.
The recommended way to customize this for Mac OS 8 is to use TEDoText.

o If your application supports TSMTE, you should now get all of your text,
not just two-byte text, through callbacks instead of through key events.

Looking Toward the Future

One of the principal underlying design goals of Mac OS 8 text-handling and
international support is to provide extensibility not only within the current
version of the system software but also with a view toward the future. This
goal is reached in many areas. For example, text objects allow movement
toward a system based in Unicode, if that direction is taken. Also, the design of
the Locale database allows for storage and retrieval of any type of international
data; as new requirements emerge, the database can easily accommodate them.

Looking Toward the Future 1-13
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Support for Unicode is another example of this extensibility and open
orientation. In addition to the fact that it offers the simplest solution for fully
multilingual systems, Unicode offers many important and useful features. One
of its most important aspects is that it naturally lends itself to text interchange
among different platforms, as well as among applications and platform code on
a single system.

Apple recognizes that the movement toward universal use of Unicode might
not happen immediately or entirely; the industry might take another direction.
For this reason, Apple intends to support and handle as many text encodings
(and text encoding schemes) and the coded character sets they include as
possible. Mac OS 8 is not limited to handling just a few encoding schemes
based on the current market size. Apple recognizes that Unicode will not
suddenly replace all other text encodings and that most platforms will have to
deal with a mixture of other text encodings (and text encoding schemes) in
addition to Unicode. For a description of the terms text encoding, text encoding
scheme, and coded character set, see “Characters, Codes, Text Encodings, Text
Encoding Schemes, and Text Elements” (page 1-70).

Because Mac OS 8 supports any encodings, including Unicode, it can move in
any direction. If the industry moves toward Unicode, Mac OS provides support
for it; if it doesn’t, Mac OS 8 still supports conversion among any encodings
and encoding schemes.

Not all of Mac OS 8 system components are Unicode based. Mac OS system
software transition to Unicode most likely will occur gradually with different
system components moving to Unicode at different times. By using text objects
in applications you are porting or coding to Mac OS 8, you are ensuring that
changes you will have to make to your code are few, if any, if Mac OS 8
transitions from a system that provides international support based in multiple
encodings to one that supports a single encoding, Unicode.

Text Handling in System 7 and Mac OS 8: A Comparison

1-14

Mac OS 8 text-handling support shapes the context in which the future of
internationalization is beginning to emerge by addressing software engineering
requirements for developing applications for the global marketplace in ways
that offer ease of use, extensibility, and flexibility.

Text Handling in System 7 and Mac OS 8: A Comparison
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Mac OS 8 provides support for more areas of text handling and
internationalization than did System 7 and provides new solutions to problems
addressed by System 7. This new support and these solutions give you more
flexibility and control over how you perform text handling in your
internationalized application and how you present language-based choices to
your application’s user. These solutions, implemented through the use of text
objects, encoding conversion, and the locale database, and effective through
your application’s use of the Text Services Manager, text panels, String
Comparison Services, and other Mac OS 8 text-handling components, allow
you to build internationalized applications that require far less management in
your code than was needed in System 7.

This section looks at the advantages of designing and developing
internationalized applications and describes some of the conceptual and
behavioral differences between Mac OS 8 and System 7 related to multilingual
support.

Internationalization and Localization

Users of computers interact with them through a combination of elements
implemented in system and application software that includes images and the
written language. Text handling is heavily culturally dependent, and there are
more software engineering issues associated with it than there are with the
handling of images across languages and cultures. Among the cultural
differences reflected in the written language are how the language is
represented—for example, is it alphabetic, ideographic, or syllabic—and how
national conventions for the presentation of date, time, and numbers are
defined.

Note

Although the term ideographic is commonly used to
characterize languages (such as Chinese) that include
ideographs and pictographs, the term is inaccurate and
misleading. Most so-called ideographic scripts include
some ideographs and pictographs but they also include
phonetics. For example, while Chinese includes both
ideographs and pictographs, it also includes many
complex characters that are phonetically based. O

In designing software applications that address these cultural differences,
applications developers can follow one of these two general strategies:

Text Handling in System 7 and Mac OS 8: A Comparison 1-15
Draft. 00 Apple Computer, Inc. 4/29/96

1-16

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Localization by reengineering. You can design and develop an application
that is specialized for a single language and culture from the beginning.
Applications localized by reengineering generally include hard-coded
dependencies on cultural and linguistic conventions. After you develop the
initial specialized product, localization by reengineering entails adapting the
software to fit specific national languages and cultural conventions for
markets other than the one for which you originally designed it.

Internationalization. You can develop application software that is
generalized and designed to accommodate various languages and cultures.
The process of designing and creating software with multiple cultures in
mind—software that can be easily localized for various geographical regions
and their languages without requiring changes to the source code—is called
internationalization. This process entails distinguishing cultural elements
that the software must accommodate differently for each language when the
software is localized and handling those elements in a way that allows for
variation. Internationalized software inevitably entails localization.
Internationalized software can call functions that access and obtain data at
runtime that is specific to a language or culture. Localizing software
designed for an international market usually requires changes to the data or
text of your application’s user interface, but no source code changes.

Clearly, internationalization offers the more cost-effective and efficient design
strategy if your intention is to make software meant for the global marketplace.
Building localized software from the beginning requires multiple code bases if
you plan to market your product in multiple geographical areas. Building
internationalized software from the beginning allows you to develop and
maintain one code base which localizers—developers in various countries who
adapt software to those countries— can then specialize.

In considering what constitutes an internationalized application, these two
separate issues surface:

User-interface handling. It is important for the user interface portion of
your application—that is, read-only text such as menu contents and system
messages—to be easily localizable. (Mac OS 8 contains multiple localizations
for system software so the system component can present messages in your
user’s language of choice.) You can use text object resources for the
nonmodifiable data of your application’s user-interface to allow for easy
localization.

User input and editable-text handling. It is important that the content
portion of your application—that is, the part that deals with user input and

Text Handling in System 7 and Mac OS 8: A Comparison

Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

editable text—be able to handle text in any language. In other words, your
application should allow your user to enter and edit text in any language. A
single document might contain text in more than one language, so your
application should support a mix of languages within the same document. A
user might type text in German, then switch to Japanese. Mac OS 8 text
handling components enable you to implement these processes easily.

To facilitate localization of applications, Mac OS 8 internationalization
components provide the ability to store and access data required for specific
locales. By supporting any text encodings and text encoding schemes, Mac OS
8 provides encoding conversion automatically through text objects or directly
through one of the encoding conversion managers. In addition to the standard
Mac OS 8 encodings provided with the system, Mac OS 8 supports Unicode
and text encodings and text encoding schemes provided by third-party
developers.

Note

A text encoding usually contains the encodings for the
characters belonging to a single character set addressing a
single script. A text encoding scheme is a method that
allows for the support of and addresses multiple coded
character sets.Text encoding schemes often include
predefined escape sequences that indicate transitions to
specific coded character sets. For a more complete
description of the terms text encoding, text encoding
scheme, and coded character set, see “Characters, Codes,
Text Encodings, Text Encoding Schemes, and Text
Elements” (page 1-70). O

Writing Systems and Scripts

Writing systems and scripts are viewed and understood differently in Mac OS 8
from System 7. Mac OS 8 text handling and internationalization software uses
the concepts of writing systems and scripts as they are understood in the area
of linguistics. This position differs from the one held in System 7, in which the
concept of a script system and what composed one was particular to System 7.
If you have relied on the understanding of these concepts imparted by
descriptions of System 7 and its predecessor versions, you'll need to adjust
your perspective somewhat to make the transition to international text support
in Mac OS 8.

Text Handling in System 7 and Mac OS 8: A Comparison 1-17
Draft. 00 Apple Computer, Inc. 4/29/96

1-18

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Writing Systems and Scripts As Understood in Mac OS 8

Mac OS 8 aligns with the standard view of writing systems and scripts
expressed in linguistic literature and explained in this discussion.

Writing Systems

Written representation of a spoken language relies on a writing system. A
writing system, then, is an artificial construct used to record language in
written form. It can be viewed as having three main components—language,
scripts, and orthography—with well defined relations to one another.

Scripts

A script comprises a set of symbols that represent the components of a
language. A writing system uses one or more scripts for the symbols required
to represent linguistic elements, which include sound, meaning, syntax and so
forth. A script can be coupled with one language, or it can represent and be
used by many languages. Moreover, a language can have more than one script
associated with it. For example, the Japanese language uses the Japanese script,
while the French, Italian, and Spanish languages all use parts of the Latin script.

A script exists apart from both the languages it represents and the writing
systems for which it is used. (A small number of scripts, less than 100, are used
by writing systems despite the large number of existing modern and archaic
languages.) Scripts have largely developed in accord with geographical and
cultural requirements; they show historical, linguistic, and geopolitical
derivations and influences.

Some scripts are more inclined to represent sound, while others represent
meaning, but usually scripts include both representations. Alphabetic scripts
are thought to represent sound exclusively and hieroglyphic or ideographic
scripts are thought to represent ideas, but this is a misconception because both
systems include symbols for sound and meaning.

A special category of scripts, called pseudoscripts, exists for use with other
scripts. These pseudoscripts include symbols, numbers, and punctuation.

Writing systems can use different scripts at the same time. A writing system
uses at least one script and typically one or more pseudoscripts. In this sense,
then, it is best to refer to the characters a writing system includes as a repertoire
of characters, rather than a character set, because these characters can belong to
different scripts. Figure 1-1 shows six writing systems and the scripts and
pseudoscripts that they incorporate. Notice that although the U.S English and

Text Handling in System 7 and Mac OS 8: A Comparison
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

U.K. English writing systems both use the same ranges of the Latin script and
the common punctuation and symbols pseudoscript, they comprise distinct

writing systems because their orthographies differ.

Figure 1-1 Writing systems, scripts, and orthographies

Scripts and pseudoscripts

Latin
(Roman) Cyrillic Hiragana Katakana Ideographs

Common
punctuation|
symbols

| 1 | | |
Writing
systems

US English |—|
UK English |—|
French for
France | |
French for
Canada I—l
German |—| |—|
sannese | — 1 H

Orthographies

Same
character
repertoire
different
orthography

Same
character
repertoire
different
orthography

The writing system for a language entails an orthography which defines the

relationship between the written language and one or more scripts.

Among the rules an orthography specifies are rules of directionality, level of
discreteness, and units of representation. For example, for mixed-directional
text, the direction of a paragraph is important. For writing systems based in
European languages, a paragraph is considered a unit of representation, as is a
word. Word division and paragraph identification are easily determined for

Text Handling in System 7 and Mac OS 8: A Comparison
Draft. 00 Apple Computer, Inc. 4/29/96

1-19

1-20

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

these languages, but this is not the case for writing systems based in Japanese
or Indic languages.

Orthographies can differ between two geographical regions using the same
language and collection of scripts. An example of this is the American English
orthography, which differs from the British English orthography.

Text-handling system software that deals with the orthography of writing
systems includes support for directionality, word breaking, hyphenating, and
spell checking services, among others.

Writing Systems and Script Systems As Understood in System 7

For System 7, a writing system is described as a set of characters and the basic
rules for their use in creating a visual depiction of language, rules for
displaying, ordering, and formatting characters. Writing systems have specific
requirements for text display, text editing, character set, and fonts. A script
system is defined as a collection of resources, mostly tables of data, that defines
the behavior of a particular writing system.

For System 7 a writing system breaks down into scripts, which imply locales
and orthographies associated with locales. While the term text encoding is not
used in System 7, a script in System 7 implies a text encoding, but it also
implies additional data stored in international resources pertaining to locales.
A script system can support various languages and regions. For example, the
System 7 MacRoman script system supports the English, French, German,
Italian, and Spanish languages. Within the French language are regional
variations, for example, Belgian and French Canadian.

In System 7, often information stored in international resources is common to a
group of locales (languages and regions) that use the script system. However,
because of the way relationships are drawn between the scripts and the locales
that particularize the data for the various writing systems or languages in
System 7, international resources containing this data that applies to multiple
locales is often replicated for each language or region. In System 7, a script
connotes information about locales. This is not so in Mac OS 8.

Deconstructing the System 7 Script Manager and Looking at Mac OS 8
Solutions

The System 7 Script Manager provides exceptionally good international
support compared with other available contemporary technologies. However,
it is constrained by a number of limitations inherent in its design. For example,

Text Handling in System 7 and Mac OS 8: A Comparison
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

text encoding is separated from the text to which it belongs. Also, extensibility
in handling international resources is inelegant because the original design was
envisioned to meet the requirement of a fixed number of resources.

In addressing and transcending these and other problems inherent in the Script
Manager, designers of Mac OS 8 recognized the opportunity to press
international support forward, set new standards, and realize in the design of
new international text-handling and storage components goals of flexibility,
extensibility, and ease of use.

This section explains some of the ways in which they did this. First, it describes
the way the Script Manager addresses the complexities entailed in providing
international text support, and then it describes how Mac OS 8 approaches
these problems.

Text Handling and Storage in the System 7 Script Manager

This section identifies in System 7 how you store the encoding for text, how the
system stores international data needed for text handling functions, and how
you access that data. You can contrast this with the way these processes are
handled for Mac OS 8 by looking at “Text Handling and Storage in Mac OS 8”
(page 1-22).

= separation of encoding from text

System 7 multiscript support allows an application to handle text expressed in
multiple languages, but it requires the application to store and manage script
and language information used to represent the text apart from the text itself.
In addition to adding complexity to code, this separation often results in the
display of unreadable text when that text is moved from an application that
provides multilingual support to one that does not, a condition sometimes
referred to as moji-bake, a phrase that means character garbage in Japanese.

= overloaded script code

The System 7 Script Manager categorizes international writing systems with a
data type called a script code. Depending on how an application uses them,
script codes can signify multiple attributes, including language and region
information, text encoding, and localization. Because script codes are
multipurpose and overloaded, they are easily misused.

= storage of international data

For System 7, international data is packaged in a file type called a Script
bundle. The system unpacks the data contained in this file and moves it into

Text Handling in System 7 and Mac OS 8: A Comparison 1-21
Draft. 00 Apple Computer, Inc. 4/29/96

1-22

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

the System file. The Script Manager was designed with the idea that a script
would require a limited set of international resources— resources such as the
numeric format resource, the long date and time resource, and the keyboard
layout resource. In time, however, this group of resources proved to be
insufficient and new resources were added, but they were handled in a variety
of ways, including overloading the Script bundle and enhancing WorldScript to
locate and load them.

m access to international data

For System 7, you use two routines—Get IntResource and
GetIntResourceTable— for accessing international data stored in resources.
These routines support a limited number of data types; adding new data types
requires that these accessor routines themselves be modified. Resources your
application can access using these routines follow a specific naming
convention; if a resource does not follow this convention, to access its data,
your code must read the resource directly from the system file.

Text Handling and Storage in Mac OS 8

This section identifies in Mac OS 8 how you store the text encoding
specification for text along with the text, how the text encoding exists separate
from the language and region information, how the system stores international
data needed for text handling functions, and how you access that data. You can
contrast this with how these processes are handled for System 7 by looking at
“Text Handling and Storage in the System 7 Script Manager” (page 1-21).

Mac OS 8 separates information previously coalesced in System 7; it provides a
distinct text encoding specification data type for identifying the text encoding
or text encoding scheme and other information used in representing text; and it
provides a distinct locale identifier data type specifying the language and
region information used to characterize text or collections of data for specific
writing systems or languages. These locale-specific data are stored in the locale
database separately from the files containing text encodings.

= coupling of text encoding specification and language and region information
with text

Mac OS addresses problems that result from storing information used to
represent text apart from the text itself by encapsulating in a text object the text
string and all pertinent information about text representation. Text objects
simplify the work you need to do to associate text encoding information with
text. Along with a text string, a text object stores the string’s text encoding
specification, its language and region information, and any annotations for it. A

Text Handling in System 7 and Mac OS 8: A Comparison
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

text object can contain multilingual text with text runs carrying this
information for varying text segments. The text, its encoding, its language and
region information, and its annotations remain together as the text is moved
from one application to another, diminishing the possibility that your text will
be displayed in an unreadable manner. All of the information, including
annotations, stays together as text is cut, copied, and pasted within your
application.

IMPORTANT

Annotations are similar to System 7 resources in that the
semantics of an annotation are available to applications
and system components that understand the annotation’s
particular tag type. Although applications other than the
one that created the annotation and Mac OS 8 system
components might be able to interpret the semantics of an
annotation, you should not assume that they do or that
they will preserve an annotation’s semantic integrity. a

If you use text objects, the system performs any necessary encoding
conversions for you. For example, if your application performs collation
processes and you use text objects, the system will convert text expressed in
any text encoding to Unicode—if the strings are in different encodings or if
collation tables don’t exist for the original encoding—so that all strings are
compared in the same encoding. See “Text Objects for Text Storage and
Interchange” (page 1-25) for more information on text objects. If you do not use
text objects, your application can convert text across encodings using one of the
encoding converters. See “Text Encoding and Conversion” (page 1-67) for more
information on the Mac OS 8 encoding converters.

= separation of text encoding from language and region

Instead of bundling together data for a geographical region with the text
encoding used to represent the text, the design of Mac OS 8 separates the text
encoding or text encoding scheme from data used for the orthography of the
language and region for which the text is to be localized, and from the font
used to image the text.

In addition to the standard set of Mac OS 8 text encodings and text encoding
schemes shipped with the software, third-party developers can provide their
own text encodings and schemes, extending the range of possible ones your
application can support. Moreover, Mac OS 8 supports the Latin-1(ISO 8859-1)
text encoding, which is currently the most common one used for the Internet,

Text Handling in System 7 and Mac OS 8: A Comparison 1-23
Draft. 00 Apple Computer, Inc. 4/29/96

1-24

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

so you can support text files in this encoding that your user obtains from the
Internet.

Resources containing data used to localize text for a certain geographical
region are stored in the locale database, whereas information for text encodings
and schemes is stored separately in files containing the coded character set and
all information needed for its mapping and conversion to Unicode.

This separation, which makes writing systems independent of text encodings
and text encoding schemes give you more control over how your application
can present choices in its user interface.

= storage of international data

The Mac OS 8 locale database provides a way in which you can store any type
of data used for text handling and text-behavior-setting, and easily modify that
data. The locale database clusters together such data for a specific geographical
area according to its locale and region information. These clusters are called
locales and each one is composed of locale objects. A Mac OS 8 locale object is
roughly equivalent to a System 7 international resource.

The locale database is highly extensible; the kind of international preferences
data and other data known to be required today does not limit or define what
you can store in the locale database and access as future requirements surface.

You can permanently add data to the locale database for use by all applications
and system components, or you can extend the data available for your
application’s use within its current process by temporarily adding data to the
database. You can also temporarily override the default behavior of various
text-handling operations for the language of a specific geographical region
from within your application’s current process to customize it for your use.

The Locale Object Manager creates the locale database and adds data to it at
system startup, but system components and your application software can
determine which data to use—for example, for localization—at runtime after
determining the user’s preferred language and the appropriate character set for
that language.

The locale database offers an extensible means of storing international
preferences data. To provide backward compatibility with System 7, the

Mac OS 8 release of the locale database provides a way to incorporate System 7
international resources, making those resources available to your application;
they show up in your resource chain, just as they always did with System 7,
even though they are stored in the locale database.

Text Handling in System 7 and Mac OS 8: A Comparison
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

m access to international data

You use the Locale Object Manager to access data stored in the locale database.
Each locale object belonging to a locale is a separate entity that you can access
independently. All data that exists in the locale database is cataloged along the
same lines and accessed using the same method. Moreover, data stored in the
locale database is cataloged along multiple lines based on information
describing that data. When developers create locale objects, they provide
various kinds of information describing the data. The Locale Object Manager
uses this information to classify and catalog the data; it includes this defining
information with the data when it adds the data to the database.

This way of cataloging locale object data allows you to access data of a certain
type for various languages and regions by specifying any of its characteristics.
For example, you might want to find all input methods for languages that use
2-byte character encodings, or you might want to find all data-and-time
formatting data for a specific language. The Locale Object Manager locates and
returns to you any data resident in the database that meets a set of
specifications you provide.

While the locale database offers extensibility, the Locale Object Manager offers
ease of use and flexibility in accessing that data. For more information on how
to access data in the locale database, see “Storage and Retrieval of International
Data and Preferences” (page 1-48).

Text Objects for Text Storage and Interchange

A text object is the fundamental unit of text interchange in Mac OS 8. You use
text objects to pass text to or receive text from system components. For
example, to specify a name to the file system, you use a File Manager function,
passing it a text object containing the name. You also use text objects to specify
text that is displayed as part of your application’s user interface. All user
interface elements in your application that contain localizable text should
specify the text using text objects and store the text in text object resources.

A text object consists of a text encoding specification, which identifies the text
encoding in which the text is expressed, a locale identifier, which identifies the
locale in which the text was originally created, and the actual text itself. A
locale identifier encapsulates an International Standards Organization (ISO)
language code, which specifies the language in which the text is to be

Text Objects for Text Storage and Interchange 1-25
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

represented, and an ISO region code, which specifies the geographical region
for languages that vary by region. A locale identifier can also contain a
customization code, but these codes are not retained by text objects because the
custom settings become invalid or obsolete as the locale database is rebuilt or
changes.

Figure 1-2 shows a conceptual rendering of a simple text object’s contents.

Figure 1-2 A simple text object

Text string

Text encoding

——— MacOS Roman

— Text object

— Nothing ages like happiness.

specification
Locale identifier—— 'eng' 'US'
|
|
ISO region code
ISO language code
Note
A text object can also contain annotations, not shown in
Figure 1-2. Annotations are discussed later in this chapter.
O
Because they enclose the encoding specification, and language and region
information along with the text, text objects make it possible for software that
did not create the text to process it correctly in an environment in which
multiple text encodings and languages are used. For example, the user
interface elements of an application localized for Hebrew will be depicted in
the Hebrew language on a U.S. MacOS Roman system if the MacOS Hebrew
character set and corresponding glyphs used to represent the text are available
on that system.
1-26 Text Objects for Text Storage and Interchange

Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Text Object Contents

This section describes the primary contents of a text object from a conceptual
perspective; these are the parts of a text object your application provides or
manipulates using the Text Object Manager. A text object contains other
information used internally, which is not described here.

A text object encapsulates
» the text string.

= the text encoding specification giving the text encoding used to express the
text. See “Text Encoding and Conversion” (page 1-67) for information on
text encodings and specifications.

s the locale identifier consisting of the ISO language and ISO geographical
region codes identifying the language and region for which the text is
localized. For background information on locale identifiers, see “Storage and
Retrieval of International Data and Preferences” (page 1-48).

= one or more optional annotations used to mark the whole text string or
segments of it with any additional information you want used in
conjunction with that text. See “Text Annotations” (page 1-39) for
information on annotations.

A Simple Text Object

A text object can contain one or more text runs. A text run is a text string
segment that is characterized by a single text encoding specification and locale
identifier stipulating how the text is to be represented. When the text object’s
entire text string has a single text encoding specification and locale identifier
associated with it, the object contains a single text run.

A locale identifier includes an ISO language code and, if applicable, an ISO
region code. A language code is a three-character, lowercase identifier used to
indicate a particular written version of a language for Mac OS 8. A region code
is a two-character, uppercase identifier used to indicate a version of the written
language of a particular region or territory.

Mac OS 8 recognizes the language codes defined by ISO in the ISO CD 639/2
draft proposal titled “Code For the Representation of Names of Languages,
alpha-3 code” dated December 16, 1991. Constants defined for these codes are
included as comments in the TextCommon . h file.

Text Objects for Text Storage and Interchange 1-27
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Figure 1-3 shows two separate simple text objects, each containing the same
text string. The first text object has a MacOS Roman text encoding and a locale
identifier for the English language of the United States. The ISO language code
'eng' specifies the English language. The ISO region code 'US' specifies the
geographical region of the United States. The second text object has a MacOS
Roman text encoding and a locale identifier for the English language of Great
Britain. Variations associated with the English language as written and spoken
in the United States apply to the first text object while variations associated
with the English language as written and spoken in Great Britain apply to the
second text object. For example, a spelling checker created for the United States
region would indicate that the word colour in the text string is misspelled and

suggest the regional spelling color.

Figure 1-3

Text object

Textstring —— Broadness, not bravery, changes

Text encoding
specification

colours like a chameleon.

—+ MacOS Roman

Locale identifier—- 'eng' 'US'

|
ISO region code

ISO language code

Text string —

Text encoding
specification

Locale identifier —

—+ MacOS Roman

— Broadness, not bravery, changes
colours like a chameleon.

— 'eng' 'GB’

Two single text-run text objects for different regions

Text object

A Text Object Containing Multiple Text Runs

|
ISO region code

ISO language code

The text string of a single text object can be composed of multiple text runs.
This is the case if various segments of the text have associated with them
different text encoding specifications and locale identifiers. Figure 1-4 shows a
text object whose text string contains these three text runs:

= The text segment “The old believe everything” is represented in the MacOS
Hebrew text encoding and the Hebrew language of Israel. The ISO language
code 'heb' specifies the Hebrew language. The ISO region code 'IL' specifies
the geographical region of Israel. An annotation specifying the color blue is

1-28 Text Objects for Text Storage and Interchange

Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

associated with the word “believe.” The Text Object Manager imaging
functions would not interpret the annotation or image the text in blue. The
application might use the color information stored in the annotation with
another imaging system.

Note
Recall that although the Mac OS 8 system software
preserves annotations, it does not interpret their content. O

= The text segment “The middle-aged suspect everything” is represented in
the MacOS Arabic text encoding. The ISO language code 'ara’ specifies the
Arabic language. There is no annotation associated with the text of this text
run. (When you create and use locale identifiers, you can use the locale
region wildcard, kLocaleRegionlildCard, along with the ISO language code
to specify that you want to use the standard form of a language, and not a
particular regional form of the language.)

= The text segment “The young know everything” is represented in the
MacOS Japanese text encoding and the Japanese language of Japan. The ISO
language code 'jpn' specifies the Japanese language. The ISO region code 'JP'
specifies the geographical region of Japan. An annotation providing a
pronunciation hint is attached to the entire text segment, while a color
annotation is attached to the word “young” only.

Text Objects for Text Storage and Interchange 1-29
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Figure 1-4 shows this text object.

Figure 1-4 A text object with multiple text runs

Annotation A

Color: Blue

Annotation B

Pronunciation
hint

1-30

Text object

ST 920 OumaRp O

The old believe everything.

MacOS Hebrew
L —

heb Il | o (IS i JolJ

The middle-aged suspect everything.

MacOS Arabic

ana HHEFATHM>TWS,
The young know everything.
L=

/ MacOS Japanese)
— Annotation C

‘jpn' 'JP’ I~
Color: Red

How Text Objects Are Used

Because they facilitate internationalization of an application, you should use
text objects for all parts of your application’s user interface, for example, for
static text in menus, panels, and dialog boxes. However, text objects are not
meant to be used as a document model, that is, for text-intensive applications
such as word processors.

The Text Object Manager provides an application programming interface (API)
that you can use to create, modify, and dispose of text objects, obtain their
contents, and obtain information about them. You can copy and replace the
contents of text objects with a text string or contents from another text object,
append text to an existing text object, and concatenate two text objects to create

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

a third one combining them. You can obtain the text contained in a text object
as a text string. You can attach annotations to the text segments of a text object’s
text string and replace and delete existing annotations.

You can determine whether a text object is empty, get its size, determine the
number of text runs it contains, and obtain the encoding of a portion of text
within a text object. You can convert text objects to and from Unicode, Pascal,
or C strings.

The Text Object Manager also includes a set of imaging functions that you can
use to draw the text of a text object.

Text Objects and Text Strings: A Comparison

A text object differs from a simple text string in three primary ways:

= A text object encapsulates and carries the text encoding specification and the
language and region information used to represent the text along with the
text string.

= A text object does not allow direct manipulation of the text. Instead, you use
the Text Object Manager functions to extract text from or put it into a text
object. A text object stores the text string and its attendant information in a
private data structure, and, is therefore, opaque to your code. By hiding the
details of the text encoding specification from your application, text objects
provide for an easy transition to a system based in Unicode.

= A text object can include annotations that are associated with the whole text
string or portions of it. Annotations can contain whatever additional data
you want to associate with the text string. You can use annotations for any
purpose suited to your application. See “Text Annotations” (page 1-39) for
information on annotations.

Text objects provide functionality equivalent to that of C strings and Pascal
strings. C string and Pascal string representations used as the principal means
of expressing text in System 7 and earlier versions of the system software do
not lend themselves to Unicode. C strings are not feasible because they are null
terminated and null bytes occur in many Unicode character encodings. Pascal
strings are simply too short to hold enough Unicode characters to be useful.

Text Objects for Text Storage and Interchange 1-31
Draft. 00 Apple Computer, Inc. 4/29/96

1-32

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Text Object Types

There are two kinds of text objects distinguished mainly by how storage for
their contents is managed: ephemeral text objects and persistent text objects.

The Text Object Manager dynamically allocates and initializes the memory for
an ephemeral text object when your application calls the Text Object Manager
function that creates one. The Text Object Manager manages the memory for an
ephemeral text object, expanding and contracting the text object as necessary to
accommodate the text and modifications to it.

You provide a block of contiguous memory for a persistent text object; the Text
Object Manager will use only that memory for the persistent text object. A
persistent text object is self contained; you can move a persistent text object
around and preserve it until you no longer need it. You can either stack-allocate
a persistent text object or create one in a fixed-size data structure. You should
always use a persistent text object if the text object will be passed from one
address space to another.

Your application allocates the memory for a persistent text object in text object
units and passes that memory to the Text Object Manager function, which you
call to initialize the persistent text object. For this purpose, the Text Object
Manager defines the TextObjectUnit data type, which consists of 4 bytes,
naturally aligning on a longword boundary.

You use a pointer of type TextObject with the Text Object Manager functions to
point to the beginning of a text object, whether the text object is an ephemeral
or persistent one.

Indices for Text in a Text Object

The Text Object Manager allows you to manipulate the text in an existing text
object. You can extract and copy text from a text object; you can insert text in
and append it to a text object; you can replace text in a text object with other
text. Functions for these and other purposes require that you identify the
character or text segment of the object’s text string that you want to affect. You
use text object indices for this purpose.

The position of a character within a text object is indicated by an index. A text
object index is a number that indicates a position between characters, before
the first character, or after the last character of the text in a text object. A text
object index does not refer to a specific character, rather it indicates the position

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

before or after that character. The Text Object Manager uses indices to identify
the position of characters composing an object’s text string.

Usually, you use a set of text object indices to specify a portion of the text
within a text object; to do so, you identify the index position before the
character that begins the text range and the index position after the character
that ends the text range.

The numerical values of text object indices are associated with the specific
internal representation of a text object’s text, so they are not valid across Text
Object Manager functions that modify the text object’s content. Numbers of
indices increase monotonically within a text object, but they are not necessarily
sequential. If the text of a text object has been modified since you last obtained
indices for a segment of its text, and you want to refer to that text segment
again—for example, to copy it again—you should use a Text Object Manager
function to obtain the new indices delineating that text segment. The characters
of the text string shown in Figure 1-5 are marked with indices identifying their
positions. Notice that the numbers representing the indices increase, but they
are not sequential (nor do they correspond to byte offsets).

Figure 1-5 Text object indices

Indices [E—

Text string

Text encoding

Locale identifier——- 'eng' 'US'

— Text object

40 90 108

— The old ‘believe LeverythingJ.

— MacOS Roman

ISO region code
ISO language code

The Text Object Manager provides constants for referring to the beginning of a
text object and its end. It is always safer to use these constants when you want
to specify the beginning or end of the text of a text object instead of attempting
to calculate the index values. These constant will always refer to the beginning
and end, while your calculated index values may not.

Text Objects for Text Storage and Interchange 1-33
Draft. 00 Apple Computer, Inc. 4/29/96

1-34

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Imaging With Text Objects

The Text Object Manager includes a set of Color QuickDraw-based functions
that you can use for imaging text objects. Unlike the System 7 QuickDraw Text
functions, the text object imaging functions allow you to specify the graphics
port to be used. These functions take an explicit color graphics port parameter
instead of using the current graphics port. You can measure and draw text
using these functions. The functions return any measurements they compute as
fixed integers instead of simple integers, as was the case for the System 7
functions.

To draw the text of a text object, you call the DrawTextObject function.
DrawTextObject draws the text at the current pen position using the glyphs for
the language and text encoding specified by the text object. The pen is left at
the end of the imaged text. When you call this function, you can provide it with
a font selection hint to be used if the Text Object Manager must perform font
substitution.

The text object imaging functions take a global text direction parameter for
handling multidirectional text, which you can set to left-to-right or right-to-left
or base it on the current system default. To give you more flexibility in the use
of these measuring and drawing functions, the Text Object Manager defines
imaging options. You can set the bit flags in a function’s option bits parameter
to specify aspects such as alignment, justification, and handling of text too
wide for the available space. Standard behavior, which you can accept or
override, is defined for each function.

Font Selection Hint for Font Substitution

A text object can contain multiple text runs, each of which is composed of text
to be represented in a different language and text encoding from its adjacent
text segments. When you draw or measure text, the specified text segment may
span multiple languages and encoding systems. When it does, the Text Object
Manager must determine the correct font to use for each text run the text
segment contains.

The Text Object Manager offers an interim solution to the problem entailed in
determining the most appropriate font to use in imaging text objects containing
multi-encoded, multilanguage text. For this purpose, the Text Object Manager
defines tokens representing special fonts. You can select one of these tokens
and pass it to an imaging function as part of the function’s option bits
parameter. The token provides a font-substitution hint to the Text Object
Manager when the current font is not the most appropriate one to use to image

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

the text of a text run. This hint will direct a text object imaging function to try
using the particular special font defined for the required text encoding of that
text run. If the Text Object Manager cannot find an appropriate font, it will use
the current one.

IMPORTANT

Again, this is an interim solution for this release of Mac OS
8. When a common, system wide solution to the
font-selection problem is available, a developer release will
addressit. a

Text Measurement

One of the imaging functions provided by the Text Object Manager returns
three metrics associated with imaging the text of a text object. The function
calculates and returns these three measurements in pixels as fixed-point values:

= the width of the text object as imaged by the DrawText0Object function. You
can use the width for performing tasks such as highlighting.

= the total line height taking into account any font substitution; line height is
the measurement or the vertical distance from the top of the text (or the
ascent line of the text) down to the bottom of the leading beneath the text (or
the ascent line of the next text line).

= the ascent, that is, the distance from the baseline to the top of the text.

Figure 1-6 maps these metrics to an imaged text string.

Figure 1-6 Text imaging metrics

Line width

Ascent
saseine ___1 O lIVe IS SO startling It leaves } Line height

" " ittle time for anything else.

Text Objects for Text Storage and Interchange 1-35
Draft. 00 Apple Computer, Inc. 4/29/96

1-36

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Text Alignment and Justification

The Text Object Manager allows you to specify text alignment and text
justification separately when drawing text in a rectangular region defined by a
box. Alignment is the horizontal placement of lines of text with respect to the
left and right edges of the text area. Justification is the spreading or
compressing of printed text to fit into a given line length so that it is flush on
both left and right edges of the text area.

When you use the Text Object Manager imaging functions, you can specify
justification separately from alignment to allow for handling the last line of text
in a paragraph. If you turn on justification, the Text Object Manager functions
will justify all of the text of a paragraph except for the last line. The last line
will be aligned according to the method of alignment you specify, but not
justified.

You can specify that text be left aligned, centered, or right aligned. Figure 1-7
shows three examples using the same text: for the first one, the text is justified
and left aligned, notice that the last line in each paragraph is left aligned, not
justified; for the second one, the text is justified and centered, notice that the
last line in each paragraph is centered, not justified; for the third one, the text is
justified and right aligned; notice that the last line is right aligned but not
justified.

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Figure 1-7 Text alignment and justification

Justified with last line aligned left.

Difficult and easy
complement each other.

Long and short contrast|
leach other.

High and low rest upon
leach other.

Justified with last line aligned center.

Difficult and easy
complement each other.

Long and short contrast
each other.

High and low rest upon
each other.

Justified with last line aligned right.

Difficult and easy|
complement each other|

Long and short contrast
each other|

High and low rest upon
each other|

Controlling Text Flow When the Text Is Too Wide for the Line

When you draw text on a line using the FlowTextObjectOntoLine function, you
can exert finer control over how the text is to be handled if it is too wide to fit
on a line, rather than accepting the default treatment. By default, the function
first tries to condense the text, then truncates it, and finally clips the text image.

To refine how the text is handled, you can specify whether it should be
condensed, elided, or both. If elided, you can specify whether the text should
be elided in the middle, at the beginning, or at the end.

Text Objects for Text Storage and Interchange 1-37
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Note

Unlike the System 7 Script Manager’s TruncateText
function, FlowTextObjectOntolLine does not modify the
original text object. All of the original text remains the
same. [

If you specify the condensed option, the Text Object Manager will use a
condensed font to fit the text on the line. If you specify that the text is to be
elided, the Text Object Manager will elide the text by omitting a portion of it
where you specify—at the beginning, middle, or end—and replacing the text
with an omission symbol, such as the ellipsis, specific to the language in which
the text is represented.

Figure 1-8 shows an example in which the first two lines are both elided and
condensed. The first line is elided in the middle, and the second line at the end.
The third line is condensed but not elided. The last line is neither elided nor
condensed.

Figure 1-8 Condensing and eliding text

Middle elided
and
condensed

End elided
and
condensed

Not elided
and
condensed

Not elided
and not
condensed

1-38

To live is so startling it leaves little time for anything else.

To live is so startling ... for anything else

To live is so startling it leaves little time...

Toliveissostartlingitleaveslittle time for

To live is so startling it leaves little time

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Text Annotations

The Text Object Manager provides a way for you to associate related data with
the text of a text object.

You associate related data with text in the form of an annotation. You can use
annotations for any purpose suited to your application. For example, you can
use annotations to tie pronunciation hints for text-to-speech conversion to the
text string. In handwriting recognition systems, you can store the “ink”
version—what the user actually writes on the screen—with the textual version
using annotations.

You might want to use annotations, for example, if you want your application
to be able to sort files in languages that do not use alphabets, such as Japanese.
For example, without the use of annotations, there is no convention that you
can use to sort a list of names if the names were created with the Japanese
coded character set. However, if you attach the phonetic pronunciation of each
name to the text for a name, you can sort according to pronunciation. In
handwriting recognition systems, you can store the “ink” version -- what the
user actually writes on the screen -- with the textual version using annotations.

You can annotate a text object’s entire text string or any portion of it. You can
attach one or more annotations to a text string. You can associate multiple
annotations containing different kinds of data with all of the text of a text string
or annotations containing the same or different data with different segments of
the text string; you can overlap annotations across contiguous segments of text.

There are two ways to add annotations to a text object:
= You can explicitly apply an annotation to the text of a text object.

= You can replace text in one text object with text from another, and the
annotations attached to the replacement text are carried along with it.

By design, text objects do not carry style information; rather, the imaging
system that your application uses is responsible for providing the style
information for the text of a text object. However, it is possible for you to
annotate text with style information. If you do, the semantics of the style
information are private to your application. That is, your application is
responsible for interpreting the style information; the Text Object Manager
does not intervene in any way.

Text Objects for Text Storage and Interchange 1-39
Draft. 00 Apple Computer, Inc. 4/29/96

1-40

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Annotation Types and Storage

You use the Text Object Manager functions to attach an annotation to an
object’s text segment. A text object annotation is a single block of data that is
self-contained and does not refer to other areas of memory. For example, you
should not include embedded pointers in any annotation that you provide. If
the text object containing the annotation were moved to a new address space,
any pointers that it contained would be invalid. When you provide and attach
an annotation to a text object, the Text Object Manager copies the data into the
text object.

Text object annotations are distinguished by type. An annotation’s type is
represented by a 4-byte tag. You define annotation types to identify the kind of
annotation data you supply. Annotation tags follow the rules that apply to
4-byte identifiers. An annotation type tag can be any sequence of uppercase
ASCII letters. Apple reserves for its own use lowercase ASCII letters, all spaces,
or all international characters (characters greater than $7F). The Text Object
Manager defines a wildcard annotation type that you can use to affect all
annotations of a text object—for example, to delete them all.

IMPORTANT

You must register any annotation types and their tags that
you define with the Apple Developer Support Center
(applelink:DEVSUPPORT). (This procedure is similar to the
one you follow in registering creator and file types.) a

Annotation Syntax and Semantics

An annotation’s data is meaningful to your application only; the Text Object
Manager does not interpret it. The Text Object Manager ensures that the syntax
of annotations remains valid across changes to the text object. Ensuring the
syntactic validity of an annotation means that the Text Object Manager
guarantees that an annotation’s size and data will not change as it adjusts the
range of text to which that annotation applies. It also means that the Text
Object Manager adjusts the annotations so that they continue to apply to the
correct portions of the text string and it ensures that annotations of the same
type do not overlap.

After the text has been modified, annotations apply to the same text as they did
before, though the textual regions may have changed; for example, some of the
text might have been deleted. The Text Object Manager also ensures that
annotations do not apply to any new text added to the text object. For more

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

information on this process, see “How Annotations Are Adjusted When Text Is
Modified” (page 1-42).

The Text Object Manager does not ensure the semantic validity of annotations
within the text object after modifications to it. The responsibility for this lies
with your application. Semantic validity refers to the internal meaning of an
annotation in relation to its text.

In Mac OS environment, text objects can pass across address spaces and
between different computers. The Text Object Manager is present and acts on
text objects in these circumstances, ensuring their syntactic validity but not
their semantic validity.

Annotations are similar to System 7 resources in that the semantics of an
annotation are available to applications and system components that
understand the annotation’s particular tag type. Although applications other
than the creator of the annotation and Mac OS 8 system components might be
able to interpret the semantics of an annotation, you should not assume that
they do or that they will preserve an annotation’s semantic integrity. Your
application should always be prepared to validate any annotations it has
created or is able to interpret if the text object containing the annotation is
passed to another application or system component that might modity it.

If your application has multiple threads sharing access to text objects, it’s your
application’s responsibility to protect access to the text objects.

Annotation Attributes

Whenever a text object has been modified, your application is responsible for
ensuring the semantic validity of annotations within the text object. When it
modifies a text object, the Text Object Manager sets attribute bits in the
annotations of the text object. Each annotation contains two attribute bits.
These bits serve as hints, indicating that you may need to validate an
annotation’s semantics. Here is how you can interpret the bits:

= You can think of the text-object-annotation-changed attribute bit as
signifying a local change. That is, the Text Object Manager sets this bit in an
annotation when it modifies the range of text to which the annotation
applies.

= You can think of the text-object-text-changed attribute bit as signifying a
global change, a change somewhere in the text of the text object. That is, the
Text Object Manager sets this bit in every annotation of the text object when
it modifies any of the text of a text object.

Text Objects for Text Storage and Interchange 1-41
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

For example, suppose a text object contains a text string for the phrase
“Changing the world one person at a time.” In this scenario, suppose one
annotation is attached to the text segment “Changing the world” and another
annotation is attached to the text segment “time.” Suppose you replace the
characters for the word “changing” with the characters for the word “seeing.”

Here is how the Text Object Manager would set the annotation bits in the
annotations attached to these text segments after changing the text:

= It would set both bits in the annotation that now applies to “Seeing the
world.” It sets both bits because the text to which the annotation applies has
been changed; this modification also qualifies as a change to any of the text
in the text object.

= [t sets only the text-object-text-changed attribute bit for the annotation that
applies to “time” because text elsewhere in the text object has been changed
but the local text to which the annotation applies has not.

You can use a Text Object Manager function to check an annotation’s bits to
determine whether you need to update the annotation’s contents to ensure its
semantic validity. The function that allows you to obtain information about the
annotations of a text object returns data structures containing an attributes field
for each annotation. This field includes two bit flags representing the
annotation bits. The Text Object Manager provides constants that define masks
you can use to test these bit flags. After you validate the annotation data, you
can use another Text Object Manager function to clear one or both of the
annotation attribute bits for annotations of a particular type. This allows you to
reuse the bits; you can refer to them later to see if the text has been changed
again.

How Annotations Are Adjusted When Text Is Modified

The Text Object Manager follows these rules in adjusting annotations after
modifying the text of a text object:

= Only one annotation of a given type can exist for a text string segment
within a text object. That is, no annotations of the same type can have
overlapping ranges.

o Adding an annotation deletes any annotations of the same type that fall
entirely within a new annotation’s range.

o Any older annotations overlapping the text segment of a new annotation
of the same type will be adjusted so that they no longer overlap the new
annotation’s range.

1-42 Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

= All annotations are cloned when their host text is split. The cloned
annotations are identical to the original except that the original and the clone
now apply to separate text segments.

The Text Object Manager makes these four kinds of adjustments to annotations
when the text of a text object is changed in some way, depending on how the
text is modified:

= If the text range that an annotation spans is completely deleted, so is the
annotation. For an example of this, see Figure 1-9 (page 1-45).

= If an annotation’s range completely contains a deleted text region, the
endpoint of the annotation’s range is adjusted to reflect the deleted text.

= If an annotation’s range intersects a deleted text region but neither contains
it nor is contained by it, the annotation’s end point in the deleted text region
is adjusted to be outside it. That is, the annotation’s range shrinks so that it
longer intersects the deleted region. Instead, it now applies to the remaining
portion of the text range to which it originally applied. For an example of
this, see Figure 1-9 (page 1-45).

= If text is inserted into the region spanned by an annotation, that annotation
is split so that the annotation is attached to the same text as before the
insertion, which is now two separate segments. For an example of this, see
Figure 1-10 (page 1-47). Here is how the Text Object Manager effects this:

o It adjusts the original annotation’s endpoint so that the annotation does
not span the inserted text.

o It copies the annotation and its data and attaches it to the remainder of
the original text segment that comes after the inserted text.

Effects of Replacing, Inserting, and Deleting Text on the Text and Its
Annotations

You can replace a portion or all of the text of a text object with new text. You
can insert text into a text object and delete text from one. Whenever you take
these actions, annotations associated with the text are affected.

Any annotations associated with text you insert into a text object are carried
along with the text. Annotations associated with text you delete from a text
object are adjusted to accommodate the remaining text to which they apply. To
replace text, the Text Object Manager first deletes the text to be replaced and
then inserts the new, replacement text.

Text Objects for Text Storage and Interchange 1-43
Draft. 00 Apple Computer, Inc. 4/29/96

1-44

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

For text deletion, insertion, and replacement, the Text Object Manager follows
the rules governing the four kinds of adjustments made to annotations when
text is modified. See “How Annotations Are Adjusted When Text Is Modified”
(page 1-42) for information on these rules.

Text Deletion and Annotations

In the example shown in Figure 1-9, the word “believe” is deleted from the text
object that encapsulates the text string “The old believe everything” and its
associated annotations.

These four annotations are associated with the word “believe”.

= The first one (A) applies to the word “believe” exclusively, so it is deleted
entirely.

= The second one (B) applies to both the word “believe” and the word
“everything”, so it is adjusted to apply to the word “everything” only.
Notice that both the local (text-object-annotation-changed attribute bit) and
the global (text-object-text-changed attribute bit) bits are set for annotation B.

= The third one (C) is adjusted to apply to the word “old” only, and both of its
bits are set.

= The fourth one (D), which spanned the text segment “old believe
everything” is split into two annotations, each containing its own set of dirty
bits, to now apply to both “old” and “everything” and both bits are set.

Notice that annotation E originally applied only to the word “everything”, so
this annotation was unaffected by the deletion. For that reason, only its global
(text-object-text-changed attribute bit) bit is set.

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Figure 1-9 Effect of text deletion on annotations

The old believe everything.

Annotation A Lo | Annotation B

| Local

—— Global

Global __|

Local ___||

Annotation C Annotation D

| |
| |
| |
| |
‘ |
| 1
| |
| |
| |
Global __| _ Local
| |
Local — | | | — Global
| |
| |
| |
| |
| |
| |
| |

Annotation E

| Local

|7__ Global

Annotation C | | Annotation B

I I
[[
Global | \ \ B | Local
Local —1— Lo \ ——+ Global
[L1 [
‘ |
I I
Annotation D1 } } } } Annotation D2
Global __| \ [D1] \ | Local
Local —1— : | | : ——— Global
I
| | I 1
} } } } Annotation E
I \ | Local
I I I I — Global
0[1]
Text Objects for Text Storage and Interchange 1-45

Draft. 00 Apple Computer, Inc. 4/29/96

1-46

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Text Insertion and Annotations

Using a text object containing the text string “The young know everything,”
and the text object from the deletion example discussed in “Text Deletion and
Annotations” (page 1-44), assume that the word “know” is copied and pasted
into the text object whose word “believe” was deleted at the same place. The
resulting text string in the text object now reads “The old know everything.”
Figure 1-10 shows the text object containing the text string “The young know
everything.” and its annotations, and the resulting text object containing the
text string “The old know everything.” As shown in Figure 1-10, annotations
are adjusted in the following way to produce the resulting text object:

= Annotation F applies entirely and only to the word “know”, and it is copied
and carried along with the word so that it applies to it, and only it, in the
text object resulting from the insertion.

= Annotation G is copied and shrunk to apply to only the word “know” when
the word is inserted in the resulting text object.

= Annotation H is copied and adjusted to apply to only the letters “k” and “n”
in the resulting text object.

= Annotation I is copied and adjusted to apply to only the letters “o” and “w”
in the resulting text object.

Text Objects for Text Storage and Interchange
Draft. O Apple Computer, Inc. 4/29/96

C

HAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Figure 1-10

Global __|

Local __|_|

Global __|

Local __|_|

bal |
cal -

Annotation F

Annotation H

Annotation B

Global __|
Local — 1
Annotation D1 Annotation D2
Global _|
|| Local ___||
Annotation F
Global _|
Local __|_|
Annotation H
Global _|
Local __|_|

The old know everything.

Effect of text insertion on annotations

The young [l everything
!

Annotation G

gl

il

Annotation |

3

Annotation C

i
ﬂ

O
IH

H]

R

H

Text Objects for Text Storage and Interchange

Draft. 00 Apple Computer, Inc. 4/29/96

=

Annotation E

il

Annotation G

il

Annotation |

il

| Local
| Global

| Local
| Global

| Local
| Global

| Local
| Global

| Local
| Global

| Local
| Global

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Text Replacement and Annotations

From your application’s perspective, text replacement appears to be a single
process. In fact, to perform text replacement, the Text Object Manager first
performs a deletion and then an insertion. The processes discussed earlier in
“Text Deletion and Annotations” (page 1-44) and “Text Insertion and
Annotations” (page 1-46) perform text replacement.

Storage and Retrieval of International Data and Preferences

1-48

International preferences and other data— data such as date-and-time strings,
number formats, hyphenation dictionaries, and collation schemes—define in
part the orthography for a particular writing system. This data allows for
language or regional variations within a writing system.

Mac OS 8 components that address international text requirements use this
data to determine how to handle text for the world’s various scripts. Whenever
your application uses an application programming interface (API) to one of
these components, your application indirectly uses this information. Your
application might also have occasion to use this data directly. For example, you
might want to obtain date-formatting information for a specific language to
display a date to your user in a particular format belonging to that language.
You might even want to customize the behavior of a certain operation, such as
collation, for a particular language.

To address the storage and access requirements for data used for international
text handling, Mac OS 8 includes a database called the locale database; to give
you access to data stored there, it includes a component and its API, called the
Locale Object Manager.

The Locale Database

The locale database is composed of clusters of information called locales, each
of which pertains to a particular language and region. Each of these clusters is
composed of various types of data used by text-handling operations and
software plug-ins. International software components such as the Text Services
Manager, the String Comparison Services, Date-and-Time Services, and other
system components your application uses to process text use this data. Data
stored in the locale database is also directly available to your application. All

Storage and Retrieval of International Data and Preferences
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Mac OS 8 applications use data stored in the locale database either indirectly or
directly.

The locale database is composed of loose collections of data. It is highly
extensible and flexible, accommodating various types of data. Using
information accompanying the data that describes it, the Locale Object
Manager catalogs this data in the database in a way that makes for easy access
along multiple lines. Figure 1-11 shows a conceptual view of the locale
database. (The contents of a locale database depend on information processed
at system startup; see “How the Locale Database Is Created” (page 1-53).) Each
locale is labeled with ISO language and region codes, together referred to as a
locale identifier. These values define the primary language or geographical
region of the locale and indicate the language and region to which the locale
objects composing the locale belong. A locale identifier also contains a
customization code identifying whether the locale contains customized data.
Within each locale are shown the sets of locale objects composing it.

Storage and Retrieval of International Data and Preferences 1-49
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Locales

Alocale exists to contain data for the language and geographical region that
define it. Although the text encodings for different languages can share coded
character sets, the languages for which they are used often differ in rules of
composition. A region is a particular subset of a language. A region can
represent a linguistic or cultural entity, not necessarily corresponding to a
nation, whose language is different enough from other versions of the same
language that it merits a specific localized version of Mac OS 8 system
software. For example, U.S. and British are two regional variations that are
subsets of the English language. The locale for the United States of America, for
example, would have English as its default language and United States as its
default geographical region.

Alocale collects together locale objects containing data that establishes cultural
preferences for the variation of the language used by a particular geographical
region. The data belonging to a locale can specify a culture’s text handling
preferences for collation, word breaking, date-and-time formatting,
hyphenation, and so forth. The data can also contain information providing
access to input methods and other processes.

Although a locale contains locale objects for the culture represented by its
primary language and region, a locale might also contain other kinds of locale
objects. For example, a modern Greek locale might have locale objects
containing collation tables or hyphenation dictionaries for classical Greek—
perhaps one for Doric Greek and one for Attic Greek—for use by scholars of
ancient Greek languages.

Alocale also serves as a focal point in the locale database. The Locale Object
Manager defines a locale reference data type that your application can obtain
for any locale by specifying a locale identifier consisting of the locale’s primary
language and region.

Many application clients of the locale database want primarily to specify the
default operation for various types of international processing. If your
application is only interested in using defaults, it can find this information
easily because locales cluster data for a specific language and region.

The Locale Object Manager

The Locale Object Manager provides a set of functions that manage, find, and
provide access to data your application requires for international text
processing and handling. Using the Locale Object Manager, you can search the

Storage and Retrieval of International Data and Preferences 1-51
Draft. 00 Apple Computer, Inc. 4/29/96

1-52

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

locale database for a single locale object containing data you want or search
iteratively for any or all locale objects matching a set of criteria you specify.

You can use the Locale Object Manager for many purposes related to the task
of finding and obtaining data. For example, you can

= determine the locale that is being used for your application, and change it if
you like.

= obtain information about the database contents, such as the number of
locales it contains and the default behavior for text-handling operations
defined at system startup for any locale. You can also change these default
behaviors for your application’s use.

= find out the name and attributes of a locale object and the locale to which it
belongs, in addition to obtaining that locale object’s data.

» temporarily add objects to the database for your use and remove them.

For many of these processes, you must identify the locale, the locale object, or
both where the data that you are interested in is stored or where the Locale
Object Manager should begin looking for that data. For this purpose, the Locale
Object Manager defines these two data structures:

= a locale reference that refers to one of the locales belonging to the locale
database. You use a locale reference to specify the locale you are interested in
when you call the Locale Object Manager functions to access and act on the
data contained in locales, to specify the beginning position of a search, and
to change the default locale to be used within your application’s process.
You can think of a locale reference as a resolved locale identifier that allows
you direct access to a specific locale.

= alocale object reference that refers to a specific locale object. You pass a
locale object reference to the Locale Object Manager functions that you use
to obtain the data contained in a locale object or to obtain information about
a locale object, such as any of the user-displayable names associated with the
locale object, the locale object’s key name, any of its attributes, and the locale
to which it belongs. You can preserve a locale object reference and use it at
any time to obtain a pointer to the data the object contains.

Default System Locale and Default Application Locale

At system startup, the Locale Object Manager establishes the default system
locale based on the language and region for which the system is localized. The

Storage and Retrieval of International Data and Preferences
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

default system locale identifies the locale whose content is used for
international text-processing functions. Typically, the language of the system
locale used for text-handling purposes corresponds to the language for which
the system is localized. However, it is possible for these two to differ.

With the Locale Object Manager, you can obtain a reference to the default
system locale without specifying its language and region. Once you have this
reference, you can use it to determine the locale’s language and region. The
Locale Object Manager bases the default locale for your application on the
default system locale. However, you can use the Locale Object Manager to
change the locale for your application to one other than the system default.

How the Locale Database Is Created

At system startup, the Locale Object Manager builds the locale database from
data contained in files stored in the Locales folder. The Locales folder can
contain Locale files or any other type of file. A Locale file identifies the
fundamental language or geographical region defining a locale and contains
locale object resources of type '1obj' belonging to the locale. For each Locale
file that the Locale Object Manager finds, it creates a unique locale in the locale
database.

Other files stored in the Locales folder can contain stand-alone locale object
resources. Locale objects are self-descriptive; they contain information
specifying which language or geographical region they were primarily
designed for. Based on this information, the Locale Object Manager associates
each stand-alone locale object it finds with the most appropriate locale for it in
the locale database.

Locale objects that are loaded into the locale database at system startup are
considered permanently resident in the locale database—that is, your
application, another application, or a system component that uses them cannot
remove or permanently modify them, and they persist beyond the life of the
application’s process in which they are used. You can think of these locale
objects as system resources.

Storing Persistent Data in the Locale Database

Your application can use the data that exists in the locale database without
having ever stored any data there, and you can store data in the database. Most
applications will use only the data stored in the locale database, but service

Storage and Retrieval of International Data and Preferences 1-53
Draft. 00 Apple Computer, Inc. 4/29/96

1-54

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

providers, localizers, and other groups of developers can provide data to be
stored there.

Depending on your purpose, there are two approaches you can take to store
data in the database and make it available to all applications and system
components:

= You can define a locale and the locale objects composing it for the locale
database by providing a Locale file.

= You can provide a stand-alone locale object, in any type of file, to be added
to a locale defined by someone else.

Defining a Locale and Its Defaults

To define a locale, you provide a Locale file. It lets you identify not only the
language and region to which the locale objects composing the locale belong
but also the default behaviors for operations having many possible
permutations.Within the Locale file, you provide locale object resources
containing data used by these operations. You might provide a number of
locale objects for the same operation. For example, your Locale file might
contain several locale objects, each specifying a set of rules for string
comparison for a given text encoding specification.

To identify which of these locale objects contains the default data, you can
include a locale defaults list resource of type '1df1" that specifies the default
behavior for any given operation. In this way, you can characterize the default
text-handling behavior of every operation within a locale. When no other
information is available to determine which data is used, the data belonging to
the default locale object for a particular operation is used.

Providing a Stand-Alone Locale Object

You do not need to define a locale to add a locale object to the database. You
can provide a stand-alone locale object, and the Locale Object Manager will
associate it with the most appropriate locale, based on required information
you provide in the locale object.

When you install a file in the Locales folder containing a stand-alone locale
object, you can easily include in the database any data that you want made
available to all of its clients. You can just as easily remove this data from the
database. For example, if you are a developer who intends to provide a specific
utility or service, such as an input method, you can create and include a

Storage and Retrieval of International Data and Preferences
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

stand-alone locale object in a file that you install in the Locale folder. When you
want to supply a new version of the service, you can remove this file and
replace it with an updated version to be used the next time the system is
booted and the database is built. You don’t need to include your locale object in
a Locale file.

Locale Objects

Alocale object is an entity containing data localized for a specific text-handling
operation or international software service, such as an input method or spell
checker, and information describing that data. They can be incorporated in the
locale database at system startup. They are installed in the database each time
it is created and reside in the database permanently until the file containing
them is removed from the Locales folder; if a file containing locale objects is
removed, the next time the database is built these objects are not included in it.
Unlike SOM-based text services—such as input methods and stemmers that
use the Text Services Manager—locale objects incorporated in the database in
this manner are data structures organized as resources; they are not objects as
understood in terms of object-oriented design.

In addition to providing locale objects for use by any database clients, you can
temporarily add them to the database for use by your application only. You use
the Locale Object Manager for this; you don’t need to create locale object
resources for this purpose. Instead, you supply a pointer to data for the locale
object when you call the function that adds it to the database. This is a void
pointer, so you can provide any type of data for the locale object.

Regardless of the method you use to specify a locale object, you always provide
additional information along with the text-handling data it contains. This
information includes names and attributes that serve to catalog the locale
object data, identifying the locale to which it belongs and the type of data it
contains. This information makes the locale object accessible to you and other
users of the locale database and also includes one or more text strings, telling
about the data, that your application can display to your user.

Figure 1-12 shows a close-up view of a locale object containing an English U. S.
date format table. Along with the data is a names table that contains the two
required names and three attribute name-value pairs giving the language,
region, and text encoding name, followed by the data. (See “Locale Object
Attribute Name-Value Pairs” (page 1-57) for more information.)

Storage and Retrieval of International Data and Preferences 1-55
Draft. 00 Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Figure 1-12 Contents of a locale object

‘eng' 'US'

Collation

Date

format
keyname = dateformat — Names
user-visible name = "U.S.Date Format Table"
language = English Attributes
region = United States
encoding name = MacOS Roman
4/15/96 Data

Note

A locale object resource contains additional information
not described here that is used internally. O

The Locale Object Manager makes the culturally specific data contained in
locale objects accessible to your application and other clients of the locale
database from many different vantages. You can access the data by knowing
only some aspects of it, for example, the kind of data it contains and the locale
to which it belongs, or any of its attributes.

Locale Object Names Table

Every locale object in the database has associated with it a names table that
contains at least two required name records. In addition to a key name, the
names table always contains a user-visible name for the locale object. The key
name is used internally to catalog the locale object in the database, and it serves
as the primary search key. Two examples of key names are inputmethod and

1-56 Storage and Retrieval of International Data and Preferences
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

collatetable. Like the key name, the user-visible name string indicates the
type of data the locale object contains, only it is meant to be displayed to the
user.

The optional names in the names table contain text strings that you can display
to your user to describe the data contents of the locale object, for example, the
copyright notice. You can obtain any of these name strings by calling the Locale
Object Manager and specifying the name whose text string you want. Each
locale object name has associated with it an identifier that serves to identify the
type of data the name string contains. The Locale Object Manager defines
constants for these identifier names that you can use to indicate the one you
want. Here is a list of the name types that a names table can contain, along with
their strings:

= The required locale object key name. The Locale Object Manager uses this
name to catalog the data in the database. It also uses it as a key into the
database to find locale objects of this type.

= The locale object user-visible name to display to the user.
= The copyright string name and the copyright value.
= The manufacturer string name and the manufacturer value.

= The function description name and a string that specifies the purpose or
type of function provided by the object’s data, for example, “U.S. English
Collation Table”.

= The locale object version string name and the version number value that
gives the version of the locale object’s data. For example, a version number
value might specify the following string: “Apple Computer Japanese Input
Method. Version 1.0”.

Locale Object Attribute Name-Value Pairs

Every locale object in the locale database contains a set of attributes provided
by the creator of the locale object, each of which consists of a name-value pair.
Sets of attributes contained within a locale object serve to classify the data the
object contains along multiple lines so that you can access it according to any
collection of its qualities at different times. You provide a data structure
containing attribute name-value pairs to describe the data that you are looking
for when you call the Locale Object Manager to obtain it. For example, your
application might look for all locale objects whose data is characterized by one

Storage and Retrieval of International Data and Preferences 1-57
Draft. 00 Apple Computer, Inc. 4/29/96

1-58

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

specific attribute while another application might look for locale objects of a
certain type having in common two or more attributes.

Locale objects belonging to the same or different locales might have some of
the same attributes; for example, all locale objects containing input methods
and collation and number formatting services for a certain language, such as
Thai, would have in common a language attribute for Thai.

Attribute name-value pairs distinguish locale objects having the same key
name. Recall that a key name specifies the type of data a locale object contains.
Alocale itself can contain multiple locale objects that include data for the same
type of operation. For example, the U. S. English-language locale might have
two locale objects for date-format data: one showing numbers, one showing a
mix of numbers and words. Taken as a whole, the locale database will contain
many locale objects providing the same type of data.

You can use attribute name-value pairs to specify which locale object of a
certain type you are looking for. Suppose you want to obtain collation tables
for the English language for both the British and U. S. geographical regions. To
request this data, you would specify the key name and an attribute; for the key
name you would specify collatetable; for the attribute you would specify the
English language. If you did not qualify the key name with the language
attribute, the Locale Object Manager would search the database for any locale
objects containing collation table data without regard for the language they
apply to. If you wanted only the regional collation table for the British form of
the English language, you would further qualify your request by including
another attribute specifying the region.

Recall that you provide an attribute value paired with a name. An attribute
name describes the type of data the attribute value specifies. For example, a
locale object might contain the predefined attribute name kLanguageName for
which the associated attribute value is a specific language code. The Locale
Object Manager defines a set of attribute names for commonly used attributes.
You can ascribe these names to attribute values to identify their content type.
These include constants for attribute names such as text service, keyboard
input method, locale identifier, and SOM class. Associated with the text service
name would be a value specifying a particular type of text service, and so on.

Where Locale Objects Reside in Memory

Locale objects composing the locale database can exist in system wide memory
or in your application’s per-process memory area, as illustrated by Figure 1-13.

Storage and Retrieval of International Data and Preferences
Draft. O Apple Computer, Inc. 4/29/96

CHAPTER 1

Introduction to Text Handling and Internationalization on Mac OS 8

Figure 1-13

Application

Per-process memory

‘eng’ 'GB’

Memory used for locale database

Collation
Calendar

Systemwide memory

‘fre' 'CA'

Calendar

Hyphenation
dictionary

Input
method

Collation

Thesaurus

Storage and Retrieval of International Data and Preferences
Draft. 00 Apple Computer, Inc. 4/29/96

1-59

1-60

CHAPTER 1

Introduction to Text Handling and Int